Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
3.
Sensors (Basel) ; 22(12)2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1884319

ABSTRACT

It is necessary to convert to automation in a tomato hydroponic greenhouse because of the aging of farmers, the reduction in agricultural workers as a proportion of the population, COVID-19, and so on. In particular, agricultural robots are attractive as one of the ways for automation conversion in a hydroponic greenhouse. However, to develop agricultural robots, crop monitoring techniques will be necessary. In this study, therefore, we aimed to develop a maturity classification model for tomatoes using both support vector classifier (SVC) and snapshot-type hyperspectral imaging (VIS: 460-600 nm (16 bands) and Red-NIR: 600-860 nm (15 bands)). The spectral data, a total of 258 tomatoes harvested in January and February 2022, was obtained from the tomatoes' surfaces. Spectral data that has a relationship with the maturity stages of tomatoes was selected by correlation analysis. In addition, the four different spectral data were prepared, such as VIS data (16 bands), Red-NIR data (15 bands), combination data of VIS and Red-NIR (31 bands), and selected spectral data (6 bands). These data were trained by SVC, respectively, and we evaluated the performance of trained classification models. As a result, the SVC based on VIS data achieved a classification accuracy of 79% and an F1-score of 88% to classify the tomato maturity into six stages (Green, Breaker, Turning, Pink, Light-red, and Red). In addition, the developed model was tested in a hydroponic greenhouse and was able to classify the maturity stages with a classification accuracy of 75% and an F1-score of 86%.


Subject(s)
COVID-19 , Solanum lycopersicum , Humans , Imagery, Psychotherapy
4.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1715393

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of human mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of CVD. That is why bioactive food ingredients, including lycopene, are so important in their prevention, which seems to be a compound increasingly promoted in the diet of people with cardiovascular problems. Lycopene present in tomatoes and tomato products is responsible not only for their red color but also for health-promoting properties. It is characterized by a high antioxidant potential, the highest among carotenoid pigments. Mainly for this reason, epidemiological studies show a number of favorable properties between the consumption of lycopene in the diet and a reduced risk of cardiovascular disease. While there is also some controversy in research into its protective effects on the cardiovascular system, growing evidence supports its beneficial role for the heart, endothelium, blood vessels, and health. The mechanisms of action of lycopene are now being discovered and may explain some of the contradictions observed in the literature. This review aims to present the current knowledge in recent years on the preventive role of lycopene cardiovascular disorders.


Subject(s)
Cardiovascular Diseases/prevention & control , Lycopene/pharmacology , Animals , Antioxidants/pharmacology , Heart/drug effects , Humans , Solanum lycopersicum/chemistry , Oxidative Stress/drug effects
5.
Biomolecules ; 10(7)2020 07 09.
Article in English | MEDLINE | ID: covidwho-1249669

ABSTRACT

Agro-industrial waste is a largely untapped natural resource of bioactive compounds including carotenoids and pectin. However, conventional solvent extraction involves the excessive use of organic solvents, costly equipment, and tedious operation. These limitations of conventional extraction methods could be prospectively overcome by the carotenoid-pectin hydrocolloidal complexation. The complexation of lycopene and pectin was efficiently promoted in an aqueous environment, resulting in the colloidal complexes that can be subsequently recovered by sedimentation or centrifugation. In this study, the potential of carotenoid-pectin complexation on tomato pomace containing carotenoids and pectin was evaluated. Tomato pomace is a rich source of lycopene, ß-carotene as well as pectin, making it suitable as the raw material for the carotenoid extraction. The extraction of carotenoid and pectin from tomato pomace was optimized using response surface methodology. The maximum recovery was 9.43 mg carotenoid fractions/100 g tomato pomace, while the purity of carotenoid-rich fractions was 92%. The antioxidant capacity of carotenoids extracted from the complexation method was found to be higher than that from the solvent extraction method. Moreover, extraction yield and antioxidant capacity of carotenoid obtained from the carotenoid-pectin complexation were comparable to that from solvent extraction. The carotenoid-pectin complexation is a promising green approach to valorize agro by-products for the extraction of valuable carotenoids.


Subject(s)
Lycopene/isolation & purification , Solanum lycopersicum/chemistry , beta Carotene/isolation & purification , Chemical Fractionation , Chromatography, High Pressure Liquid , Industrial Waste/analysis , Lycopene/chemistry , Pectins , Water/chemistry , beta Carotene/chemistry
6.
Med Hypotheses ; 147: 110480, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1174424

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus is now considered a global public health threat. The primary focus has been on reducing the viral spread and treating respiratory symptoms; as time goes on, the impact of COVID-19 on neurological and haemostatic systems becomes more evident. The clinical data suggest that platelet hyperactivity plays a role in the pathology of COVID-19 from its onset and that platelets may serve critical functions during COVID-19 progression. Hyperactivation of blood platelets and the coagulation system are emerging as important drivers of inflammation and may be linked to the severity of the 'cytokine storm' induced in severe cases of COVID-19, in which disseminated intravascular coagulation, and platelet hyperactivity are associated with poor prognosis and increased risk of mortality. We propose that targeting platelet hyperactivity in the early stages of COVID-19 infection may reduce the immunothrombotic complications of COVID-19 and subdue the systemic inflammatory response. Lowering baseline platelet activity may be of particular importance for higher-risk groups. As an alternative to antiplatelet drugs, an inappropriate intervention in public health, we propose that the dietary antiplatelet agent Fruitflow®, derived from tomatoes, may be considered a suitable therapy. Fruitflow® contains antiplatelet and anti-inflammatory compounds that target the mechanisms of platelet activation specific to COVID-19 and can be considered a safe and natural antiplatelet regime.


Subject(s)
Blood Platelets/cytology , COVID-19/blood , Plant Extracts/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Solanum lycopersicum , Anti-Inflammatory Agents , Blood Coagulation , Blood Pressure , COVID-19/complications , Disease Progression , Humans , Immunoglobulin G , Inflammation/pathology , Models, Theoretical , Platelet Activation , Prognosis , Thrombosis
7.
Sensors (Basel) ; 20(22)2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-918244

ABSTRACT

Greenhouses and indoor farming systems play an important role in providing fresh and nutritious food for the growing global population. Farms are becoming larger and greenhouse growers need to make complex decisions to maximize production and minimize resource use while meeting market requirements. However, highly skilled labor is increasingly lacking in the greenhouse sector. Moreover, extreme events such as the COVID-19 pandemic, can make farms temporarily less accessible. This highlights the need for more autonomous and remote-control strategies for greenhouse production. This paper describes and analyzes the results of the second "Autonomous Greenhouse Challenge". In this challenge, an experiment was conducted in six high-tech greenhouse compartments during a period of six months of cherry tomato growing. The primary goal of the greenhouse operation was to maximize net profit, by controlling the greenhouse climate and crop with AI techniques. Five international teams with backgrounds in AI and horticulture were challenged in a competition to operate their own compartment remotely. They developed intelligent algorithms and use sensor data to determine climate setpoints and crop management strategy. All AI supported teams outperformed a human-operated greenhouse that served as reference. From the results obtained by the teams and from the analysis of the different climate-crop strategies, it was possible to detect challenges and opportunities for the future implementation of remote-control systems in greenhouse production.


Subject(s)
Artificial Intelligence , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Solanum lycopersicum/growth & development , Agriculture/trends , Betacoronavirus/pathogenicity , COVID-19 , Climate , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL